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A method for minimizing the number of power transformations needed or variables 
involved for the convexification of signomial functions in global optimization problems 
is presented in this article. By utilizing this method, the complexity of the transformed 
and convexified problem can be reduced and, hence, be solved more efficiently. The 
method is based on the fact that signomial terms can always be convexified by applying 
power transformations to the individual variables included in the terms. Furthermore, by 
properly selecting these power transformations and approximating the inverse transfor-
mations with piecewise linear functions, the feasible region of the problem can be over-
estimated, making it possible to solve optimization problems of the mentioned form to 
global optimality as a sequence of convex mixed integer programming problems. 
 
1. Convexification and Underestimation of Signomial Terms 
A signomial function is defined as the sum of signomial terms, where each term consists 
of power functions, i.e. 
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It is clear that a signomial function is convex if the terms are convex. There are many 
different ways to convexify a non-convex signomial function, for example, by the use of 
exponential, inverse or power transformations. The latter are utilized in this article, and 
their validity is based on results from Maranas and Floudas (1995) stating that: 
 

A) A positive signomial term is convex if:  
 (i) all the powers are negative, or  
 (ii) one power is positive and the rest negative, and the sum of the powers is 

greater than or equal to one. 
B) A negative signomial term is convex if all powers are positive and the sum of the 

powers is smaller than or equal to one.  
 
From these statements, it can be deduced that an arbitrary signomial term can always be 
convexified by using a power transformation z = ZQ and its inverse transformation 

QzZ /1= , where the variables Q fulfill certain criteria. Applying this transformation to 
the variables in the term does indeed convexify the signomial term, but only by moving 
the non-convexities from the signomial terms to the constraints introduced by the in-
verse transformations. However, by approximating the non-linear inverse transforma-



tions with piecewise linear functions, the whole problem can be convexified, on the 
condition that the approximation of each transformed signomial term underestimates the 
original term. This is accomplished by introducing additional requirements on the trans-
formations. The power transformations and the underestimations mentioned have been 
studied previously, for example, in Pörn (2000), Björk (2002) and Westerlund (2005). 
 
Since the convexity requirements are different for negative and positive signomial 
terms, different requirements on Q are needed. For negative terms (c < 0), the power Q 
must be positive for variables with positive powers and negative for variables with 
negative powers. Also, if the transformed terms are to underestimate the original term, 
certain conditions on the variables Q must be satisfied. For negative terms, these condi-
tions coincide with the convexification requirements, so the statements  
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must be fulfilled, if the power transformations are to give valid convex underestimates. 
For a non-convex positive signomial term, the convexity requirements on the powers Q 
are, that at most, one positive power may remain positive after the transformation, i.e. 
there may exist an index k (1 ≤ k ≤ N), so that the product pkQk is positive, while piQi is 
negative for all other indices i ≠ k. The variables with negative powers do not need to be 
transformed at all, so Q is defined to be one in this case. By combining these require-
ments with the requirements needed for underestimation, the conditions  
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are received for positive signomial terms (the sum is only required if an index k exists). 
Using power transformations of the mentioned form, signomial terms can always be 
convexified and underestimated whenever the inverse transformations are approximated 
with piecewise linear functions. 
 
2. Optimization of the Power Transformations 
The power transformation method used in the above convexification procedure, can be 
optimized by making sure that Q is equal to one, i.e. no transformation takes place, 
whenever allowed by the convexification and underestimation requirements. Presented 
here is a method for the convexification of a problem with JT non-convex signomial 
terms, see Lundell (2007). From now on, the indices j correspond, not only to non-
convex signomial terms in a single signomial function, but to all non-convex signomial 
terms in inequality constraints less than or equal to zero in the problem.  
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to one, the introduction of a binary variable bji, being zero if the variable zi in the j-th 
term is not transformed, and one otherwise, makes it possible to write the transformed 
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with the objective being to minimize the number of transformations required for the 
convexification and underestimation of the JT signomial terms in the problem, i.e. 
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under the conditions that the powers Q satisfy the requirements (2) or (3), depending on 
whether the term in question is negative or positive. The solution to this problem will 
indicate, not only the number of transformations required, but also which variables need 
to be transformed, as well as, the power transformations that can be used. 
 
However, when approximating each inverse power transformation with a piecewise 
linear function, the same binary variables can be used in all piecewise linear approxima-
tions of the inverse transformation of the same original variable zi, even if the transfor-
mations used are not the same. Therefore, it could be more beneficial to minimize the 
total number of original variables involved in the transformations rather than the total 
number of transformations, hereby also minimizing the number of binaries needed in 
the piecewise linear functions. By introducing a new binary variable Bi, equal to one if 
the i-th variable is transformed by a power transformation in any of the terms where it is 
found, and zero otherwise, it is possible to minimize the number of original variables 
involved in any of the transformations. Since it is still important to keep the total num-
ber of transformations down, the previous objective function (4) is included, but multi-
plied with a small positive value δ, to give the minimization of the number of transfor-
mations less weight than that of the transformed variables. Furthermore, to promote 
numerically more stable powers of Q, an additional penalty term (multiplied with δ 2) 
consisting of the sum of the deviations Δ of the powers Q from +1 if Q is positive (when 
the binary β=1) and -1 if Q is negative (when the binary β=0). Hence, the new objec-
tive, as well as, the conditions on the binaries B and the deviations Δ can be written as 
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The conditions guaranteeing correct power transformations also need to be added to the 
linear problem. These conditions, given below, are different depending on the sign of 
the signomial terms, i.e. whether cj is positive or negative in the j-th signomial term.  

2.1. Conditions for the negative signomial terms 
For negative signomial terms (cj < 0), it must be guaranteed that, when the power is 
positive (p > 0) and a transformation is necessary (b = 1), then Q must be between zero 
and one, and if a transformation is not needed (b = 0), then Q is equal to one. These 
conditions can be formulated as the linear inequalities (7), where the index i corre-
sponds to the indices for the positive powers in the negative signomial j. 
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A positive constant M1=ε , where M is a large number, has been used in the inequali-
ties (7) to give practical bounds. When the power is negative (p < 0), a transformation is 
always necessary and Q must be negative, so bji = 1 and –M ≤ Qji ≤ -ε, where the indices 
i correspond to the variable with negative powers in the negative signomial term j. Fur-
thermore, the sum of all the powers in the signomial term after transformation must be 

less than or equal to one, so the requirement ∑ =
≤N

i iiQp1 1  must also be fulfilled.  

2.2. Conditions for the positive signomial terms 
For positive signomial terms, more freedom exists regarding how the transformations 
can be chosen, since a term can be convexified in two different ways: either all the vari-
ables have negative powers after the transformation or one variable has a positive power 
and the rest of the variables have negative powers. To be able to handle the variables 
with positive powers, a binary variable αji is introduced. This variable is equal to one if 
zi has a positive power after the transformation in the j-th term, and equal to zero other-
wise. Since at most one transformed variable per term can have a positive power, the 

requirement ∑ =
≤N

i ji1 1α  is necessary. 

 
The variable Q should be larger or equal to one for a variable with the positive trans-
formation (α = 1), and be smaller than zero for the rest of the originally positive powers 
(with α = 0). Therefore, the following conditions must be included: 
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Also, for variables with positive powers (p > 0), the binary b should be equal to zero 
when no transformation occurs, i.e. when α = 1 and Q = 1, and equal to one otherwise. 
Using the same values on M and ε as in section 2.1, this can be formulated as: 
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where i corresponds to the indices for the variables with the positive powers in the j-th 
signomial term. For the negative powers (p < 0) a transformation is not needed, so the 
following conditions are included in the linear problem: bji = 0, Qji = 1 and αji = 0. 
Furthermore, the sum of all the powers in the signomial term after transformation 
should be greater or equal to one if there exists one variable with positive power, i.e. 
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must also be valid for a positive signomial term. 



 
By formulating a mixed integer linear minimization problem with the objective function 
and linear constraints presented in this chapter, it is possible to determine not only 
which variables need to be transformed, but also the power transformations required for 
convexification and underestimation of all the signomial terms in the original problem. 
 
3. Examples and Simulations of the Method 

3.1. An example 
The following geometric programming problem from Rijckaert and Martens (1978), 
including seven signomial terms and eight variables, is used to illustrate the procedure.  
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The underlined terms are convex, and can be disregarded. The method was applied to 
the rest, resulting in a total of 12 power transformations being needed to convexify and 
underestimate the terms, and that the variables z4 and z6 do not require any transforma-
tion at all. The resulting convexified signomial terms and transformations are: 
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Approximating the inverse power transformations with piecewise linear functions, for 
example, using the SOS 2 representation discussed in Beale and Forrest (1976), the 
signomial terms will be underestimated.  

3.2. Simulations of the method used on randomly generated signomial terms 
To determine how well the method works, simulations on two different problem sizes 
were performed. Each simulation consisted of 50,000 groups of random signomial 
terms: one with 25 terms and 50 variables per group and one with 50 terms and 100 
variables per group. The signomial terms (both negative and positive, as well as, convex 
and non-convex) were generated so that most of them were products of one, two or 



three variables, and no term of more than seven variables. The powers were normally 
distributed with mean zero and variance four. The results are presented in Figure 1, 
from where it can be seen that often not all variables need to be transformed for the 
function to be convexified. The median number of transformed variables in the smaller 
simulation was 34, and in the larger simulation 67, so in both cases about one third of 
the original variables did not need to be transformed at all. The median number of 
power transformations required was 41 in the smaller case and 82 in the larger case.  
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Figure 1: Simulations with 50,000 randomly generated groups of signomials with 
25 terms and 50 variables (left) and 50 terms and a total of 100 variables (right). 
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